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Brownian dynamics simulation of dense binary colloidal mixtures: II.
Translational and bond-orientational order
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We report the Brownian dynamics simulation results on the translational and bond-angle-
orientational correlations for charged colloidal binary suspensions as the interparticle interactions
are increased to form a crystalline (for a volume fraction ¢ = 0.2) or a glassy (¢ = 0.3) state. The
translational order is quantified in terms of the two- and four-point density autocorrelation functions
whose comparisons show that there is no growing correlation length near the glass transition. The
nearest-neighbor orientational order is determined in terms of the quadratic rotational invariant
Q: and the bond-orientational correlation functions g;(¢t). The ! dependence of Q; indicates that
icosahedral (I = 6) order predominates at the cost of the cubic order (I = 4) near the glass as
well as the crystal transition. The density and orientational correlation functions for a supercooled
liquid freezing towards a glass fit well to the stretched-exponential form exp[—(t/ T)P ]. The average
relaxation times extracted from the fitted stretched-exponential functions as a function of effective
temperatures T obey the Arrhenius law for liquids freezing to a crystal whereas these obey the
Vogel-Tamman-Fulcher law exp[ATy /(T* — Ty)] for supercooled liquids tending towards a glassy
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state.
formers like the organic and molecular liquids.

The value of the parameter A suggests that the colloidal suspensions are “fragile” glass

PACS number(s): 82.70.Dd, 61.20.Ja, 05.40.+j, 64.70.Dv

I. INTRODUCTION

The nature of translational and bond-orientational or-
ders [1] in liquids as a function of temperature has been
studied in the past few years and is still to be under-
stood completely. The motivation to look for these orders
in three-dimensional systems [2] has come from the ob-
servation of the “hexatic” phase in two dimensions with
sixfold bond-orientational order but no translational or-
der. A suitable order parameter to investigate the bond-
orientational order, called the quadratic rotational in-
variant @; (defined below), was introduced in the pio-
neering work of Steinhardt et al. [3]. Their molecular
dynamics (MD) simulations of one-component Lennard-
Jones (LJ) system [3] have shown the presence of ex-
tended bond-orientational order (predominantly icosahe-
dral) but short-range translation order in a supercooled
liquid. One of the rationale of this observation was the
original idea of Frank [4] that icosahedral clusters are
lower-energy configurations than other microcrystalline
arrangements. In subsequent papers, Nelson and Widom
[5] had shown that frustration effects prevent the exis-
tence of infinite-range icosahedral ordering. The concept
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of icosahedral ordering has been frequently used to model
dynamics in supercooled liquids and glasses [6]. The or-
der parameter @Q; and the associated correlation function
Pi(t) = (Q1(0)Qi(t)) have been used quite extensively
as important tools in computer simulations not only to
quantify icosahedral order in monodisperse or binary su-
percooled liquids [7-11] but also to study crystal nucle-
ation [11,12]. Other techniques [13-15] have also been
suggested to quantify the icosahedral order. We note
that some studies [11,13], contrary to the above results,
have failed to show predominant icosahedral order in the
supercooled liquid states. In a recent paper, Clarke and
Jénsson [15] have studied the effect of densification on
random hard-sphere packing and shown that the icosa-
hedral ordering can arise from packing constraints alone.

As aliquid is cooled, its characteristic time scale grows
rapidly and finally diverges at the glass transition (GT).
Associating this growth with an underlying thermody-
namic phase transition with a correspondingly growing
correlation length scale, similar to the spin-glass transi-
tion [16], is a central theme of many theoretical studies
[17,18] of the GT. Even though a large number of exper-
iments [19] and computer simulation [9,10] have failed to
produce any indication of such a diverging length scale,
recent experimental data [20] are still being interpreted
in these terms, keeping the issue still controversial.

The interparticle interaction of the aqueous suspen-
sions of charge-stabilized polystyrene spheres (polyballs)
[21] can be easily tuned so that the suspensions can mimic
structural and dynamic behavior similar to simple atomic
fluids and solids. In this paper, we present the study
of translational as well as orientational order of binary
polyball mixtures while reducing its effective tempera-
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ture from a liquid to a crystal and also to a glass. The
static properties and the mean-squared displacements
of the same system are reported in the preceding pa-
per (hereafter called paper I) [22]. These, together with
other dynamic properties such as the van Hove correla-
tion function [23] of these states, supplement our studies
of translational and bond-orientational orders to arrive
at some understanding of the cooperative behavior. The
model and the simulation procedure are described in de-
tail in paper I [22]. Section II of this paper is devoted to
the results of our simulations and Sec. III contains the
summary of our findings and conclusions of this work.

II. RESULTS

In this section we report the results of our Brown-
ian dynamics (BD) simulation study of the translational
as well as bond-orientational order parameters as a bi-
nary dense liquid is effectively “cooled” by reducing n;
in 12 steps to a crystal for ¢ = 0.2 or to a glass for
¢ = 0.3 [24-30]. The translational order has been quan-
tified by the normalized two-point cz(t) and the four-
point Cy4(r,t) density-correlation functions in Sec. IT A.
The Sec. IIB provides details of the computations of
the quadratic rotational invariant @; and the normal-
ized bond-orientational autocorrelation functions g;(t) to
quantify the bond-orientational order. The density and
bond-orientational relaxation times, extracted from the
stretched-exponential fits of the above correlation func-
tions, are dealt with in Sec. IIC.

A. Translational order
1. Density autocorrelation function

Following the work of Dasgupta et al. to evaluate the
density correlation functions [9], we subdivide the system
of N = 432 particles into a lattice of M x M x M (M =
10) cubic cells with side a,. Each cell is labeled by one
of its vertices 7 or equivalently by 7; with respect to a
reference coordinate frame fixed by the simulation box.
One can then define a two-point density autocorrelation
function as

Ca(t) = [(n(é, to)n(is to + 1)), (1)

using a lattice-gas variable n(s,t) = sgn[m;(t)—m)], where
m;(t) is the number of particles at time ¢ in the cell < and
17 is the average number of particles per cell. The angular
and the square brackets throughout this paper indicate
the averages over initial times ¢y and over sites ¢, re-
spectively. Figure 1 shows the values of mo = [(n(,t))]
as a function of T* for the crystalline transition (CT)
(¢ = 0.2) and the GT (¢ = 0.3). Since the total number
of cubic cells (equal to 1000) here is greater than 2.V, mg
is negative. If the centers of two particles get closer than
the cell diagonal V/3a,, both of them contribute to the
same cell. This is more likely at high temperatures where
the underlying order is fluidlike, leaving empty cells more
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FIG. 1. Plot of mo = [(n(%,t))] versus 1/T* for the liquid to
crystal transition (¢ = 0.2) and the liquid to glass transition

(¢ = 0.3).

than M3 — 2N and hence resulting in a decreased value
of my compared to that at low temperatures. We note
that by definition C2(¢t = 0) = 1 and that it asymptot-
ically decays to Cy(t — 0o) = m2 in a fluid phase. To
keep its value between 0 and 1 so that any asymptotic
nonzero value of this correlation function signifies the ar-
rested motion, characteristic of a solid (crystal or glass)
state, we define a scaled (or normalized) density correla-
tion function

a(t) = O3, @

Figures 2 and 3 show the growth of c3(t) as a function
of time t at seven different runs for ¢ = 0.2 and Figs. 4
and 5 show c3(t) for ¢ = 0.3 at eight different runs. By
comparing Fig. 2(c) with 2(d) and Fig. 5(a) with 5(c),
we can clearly see that in each case, at lower temper-
atures the system is more mobile, i.e., the correlation
function comparatively decays more. These results (see
Fig. 6 also) indicate that freezing for both the crystal
and the glass, in our system, is a “three-stage” process.
There is a monotonic increase of the area under the curve
ca(t) (i-e., the density relaxation time) with lowering the
temperature until some particular value (say T7), be-
low which the area decreases, indicating the surprising
retrieval of a more liquidlike (mobile) state up to a sec-
ond temperature Ty (< T7). Upon further cooling, the
long-time tail of c»(t) increases in magnitude until the
final (n; = 0) crystalline (¢ = 0.2) or amorphous state
(¢ = 0.3) is reached. The temperatures 77 and Ty are
more precisely found out in a later subsection (II C) from
the plot of the relaxation time, extracted from these cor-
relation functions, as a function of T*. The evolution of
the dynamics and the three-stage process, as apparent
from these correlation functions, are perfectly consistent
with the Einstein plots (mean-square displacement ver-
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FIG. 2. Temporal growth of the normalized density auto-
correlation cz(t) and the bond-orientational correlation g;(t)
functions for | = 2,4,6,8,10 (solid lines) along with their
stretched-exponential [Eq. (8)] fits (dashed lines) for the runs
(a) Xc, (b) Xe, (c) Xf, and (d) Xh with ¢ = 0.2. In (a), the fit
is shown only for c2(t) to avoid overcrowding of curves. The
sequence of curves from top to bottom in each panel is c2(t),

gs(t), ga(t), 92(t), gs(t), and gio(t).
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FIG. 3. Functions cz(t) and g:(t) for I = 2,4,6,8,10 for the
runs (a) Xk, (b) X1, and (c) Xm, all with ¢ = 0.2 and n; = 0.
The sequence of curves from top to bottom is marked in the
respective panels.
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FIG. 4. Same as in Fig. 2 but for ¢ = 0.3 and the runs (a)
Ga, (b) Gb, (c) Gc, and (d) Gd. Fits to Eq. (8) for only c2(t)
are shown in (a) and (b) to avoid overcrowding of data. The
sequence of curves from top to bottom in each panel is c2(t),

g6(t), ga(t), g2(t), gs(t), and gio(t).

sus time) in both cases, which are shown in paper I [22]
and elsewhere [23,30]. Below T3, the respective CT or
GT takes place, which arrests the particle motion to show
long-time saturations in ca(t).

2. Four-point density correlation function

We have also computed more general space-time cor-
relation functions defined by [9]
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FIG. 5. Same as in Fig. 4 but for the runs (a) Gf, (b) Gi,
(c) Gj, and (d) Gk, with ¢ = 0.3. The sequence of curves
from top to bottom are marked in the respective panels.
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Cu(7, 1) = [(n(73, to)n(7i + 7 t0)
xn(7, to + t)n(Fi + 7, to + t))] (3)

and

Ca(F) = [(n(F to)n(Fs + 7,10))%] = lim Ca(7,1).  (4)

Figure 6 shows the plot of C4(r = 2.45a,,t) by continu-
ous lines and [C2(t)]? by dashed lines for ¢ = 0.2 in panel
(a) and ¢ = 0.3 in panel (b). We note that if the system
has spatial correlations of range less than 7, then Cy4(7,t)
should be identical to [C2(t)]?. As can be clearly seen
from Fig. 6(a), the difference between the two functions
increases with reducing the temperature for the CT. By
contrast, we see from Fig. 6(b) that C4(7,t) = [C2(t)]?,
implying that any correlation present in the system de-
cays in less than r ~ 2.5a,. This points to the absence of
any diverging correlation length near the GT, in agree-
ment with the previous simulations [9,10] and experi-
ments [19]. It not only contradicts the idea of identifying
the GT as a thermodynamic phase transition associated
with a corresponding divergent length scale [17] but also
rules out the possibility of the spatial growth of the non-
crystallographic clumps of particles (“amorphons”) near
the GT, as speculated by Hoare [31].

B. Bond-orientational order

The nearest-neighbor orientational order in computer
simulations can be calculated by quadratic rotational in-
variants [3] and bond-orientational autocorrelation func-
tions [9]. The simulation box is meshed into M x M x M
cubic cells as before. We consider each pair of nearest
neighbors, lying at a distance less than the first mini-

Cy(r =245a,t), [C,)F —>

’ t (sec)

FIG. 6. Temporal growth of the four-point density correla-
tion functions Cy4(r = 2.45a,,t) (continuous lines) compared
with [C2(t)]® (dashed lines) for (a) ¢ = 0.2 and (b) ¢ = 0.3.
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mum of its partial pair distribution functions (PDF’s),
to be interconnected by lines (“bonds”). With respect to
the coordinate system fixed by the box, if (64, ¢« ) is the
orientation of a bond «, then depending on the proximity
of the bond center 7, to one of the eight vertices i (i.e.,

-

dio = To — Ti), we define a weight function [9]

wt = exp [—(dia/as)] 5
“T S exp [~ (dsa/a) )

J

and orientational order parameters Qun(Ta,t) =
Yim(0a(t), da(t)), where {Yi,, } are the spherical harmon-
ics. We evaluate the quadratic rotational invariant

. Noona 2 1/2
4 1 =
= T m -’a,t
@ 2l+1mg—l< Moo, ; Qum (7a, ) >

(6)

and the temporal evolution of the bond-orientational au-
tocorrelation function

l

Gi(t) = 5= D [(Wim(isto) Wi (isto +1))],  (7)

where Wi (i,t) = 3 wE Qum (Fa, t) is summed over all
the bond centers lying in the cell . We restrict our at-
tention to even-l spherical harmonics, which are invariant
under inversion. The averaging over all m values ensures
that the results are not affected by the choice of a par-
ticular coordinate system. Clearly, G;(t) is a measure of
the ease with which a bond can execute local orientations
in a given state.

1. Quadratic rotational invariant Q,

Figure 7 gives the results of Steinhardt et al. [3] for
the quadratic invariants calculated for five different bond
clusters, namely, (a) icosahedral (icos), (b) face-centered
cubic (fcc), (c) hexagonal close pack (hcp), (d) body-
centered cubic (bcc), and (e) simple cubic (sc) for I = 2,
4, 6, 8, and 10. Since these clusters correspond to the
unit cells, identical results are valid for the infinite crys-
tals also with these symmetries. We note that nonzero
averages appear for [ > 4 in hcp cluster and in cubic
clusters (fcc, bec, and sc). Also, I = 6 and 10 signals
are nonzero for an icosahedral cluster. As calculated by
Frank [4], the icosahedral packing needs ~ 8.4% less en-
ergy than fcc or hcp (the unit cluster consisting of 13
particles for all) but is not space filling.

In Fig. 8 we show the ! dependence of Q; for the final
crystalline states for the runs Xm [which has the expected
features as calculated for a bec unit cell in Fig. 7(d)], Xk,
and Xl. The difference between Q;’s of the Xk and the
Xm and a reasonably qualitative agreement with the Xl
suggest that the final crystalline state Xk has distortions
present in the structure and the particles in the lattice
are randomly situated, irrespective of their types. This
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is in agreement with the findings [22] that the values of
the internal energy F and PDF’s of the final-state Xk
match better with X1 than with Xm. We note that the
cubic periodic boundary condition, even though it might
favor the cubic order (I = 4) [3], is not solely responsi-
ble for the observed high value of Q4 since it reproduces
quite well the expected low value of Q4 for the bcc unit
cell [3] in the run Xm of the same system (Fig. 8). Also,
the higher values of Qg, Q10 and a lower value of Qg in
the final state of the run Xk compared to Xm suggests
the presence of a predominant icosahedral order in the
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FIG. 8. Comparison of the Q;’s (I = 2, 4, 6, 8, and 10) for
the bece crystals obtained in the final states of the simulation
runs Xk, XI, and Xm. The temperature for all these runs is
T* = 0.0369.

10

FIG. 7. Histograms of the quadratic ro-
tational invariant @Q; for 13-atom icos, fcc,
and hcp clusters, as well as for 15-atom bcc
and 7-atom sc clusters. The results are taken
from Ref. [2].

system. In fact, comparing our results on Q; for the CT
(¢ = 0.2) [Figs. 9(a) and 9(b)] and the GT (¢ = 0.3)
[Flg 9(c)] with Fig. 7, we find that these systems show a
predominant superposition of icosahedral and cubic or-
ders. When a liquid is cooled to approach the CT, the
| = 6 signal monotonical increases along with a nonzero
I = 10 signal. Also, there is a sudden change in Q;’s (in-
crease in | > 4 signals and a decrease in Q3) at the CT,
expected of a first-order phase transition. By contrast,
the temperature evolution of the quadratic invariant Q;
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FIG. 9. Q; versus 1/T* (I =2, 4, 6, 8, and 10) as a liquid
is cooled to (a) and (b) ¢ = 0.2 and (c) ¢ = 0.3. (b) shows a
blowup of the relevant portion of (a).
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for the GT is entirely different. The Q4 remain slightly
higher than Qg in the fluid phase, but icosahedral order
grows at the expense of cubic order near the T,,. The cu-
bic order was present near the GT in the MD simulations
of LJ systems [3,10].

The lower values of @Q;’s in the liquid and the glassy
states [Figs. 9(b) and 9(c)] as compared to their values
in the corresponding perfect bond clusters (Fig. 7) is be-
cause of the averaging of these short-range orders over the
entire system [10]. We note that the @Q; (I > 4) increase
abruptly at the CT [Fig. 9(a) and the values in the crys-
tal (run Xk) given in Fig. 8]. This can be due to the fact
that the short-range ordered “domains” can be similarly
aligned in the crystal compared to the random alignment
in the liquid or glass [32]. We also note that the values of
Q for the binary systems studied so far [7,10] are lower
than that observed in the less frustrated monodisperse
systems [3]. This indicates that “frustration,” which is
one of the characteristics of binary systems, could be an
added reason for these lower values. Nevertheless the [
dependence of Q; is suntil a meaningful quantity to probe
in order to gain insight about the local orientational bro-
ken symmetry.

2. Bond-orientational autocorrelation function

The normalized bond-orientational autocorrelation
function g¢;(t) = Gi(t)/Gi(0) [Eq. (7)] is a very use-
ful parameter to quantify the local orientational order
and its relaxation dynamics as a function of temperature
[9]. The quantities cz(t) and g;(t) together yield a suf-
ficiently clear picture of the translational and the local
bond-orientational structural relaxation of the system in
a given state. Figures 2 and 3 (or Figs. 4 and 5) show
the cz(t)’s and g;(t)’s for all I’s for ¢ = 0.2 (or ¢ = 0.3).
We see from these figures that the decay of correlation
functions become slow as the liquid is cooled and is al-
most absent for the crystal (or the glass). The long-time
saturation value of these correlation functions, which has
a clear | dependence, can be taken as a measure of the
nonergodicity parameter [33] used to probe the evolution
of the dynamics as the liquid is cooled [34]. The [ de-
pendences of the g;(t) in the glass and in the liquid are
similar to each other, implying that the orientation of
the local cage surrounding a particle is similar. This is
not surprising since glass is expected to be a quenched
liquidlike disordered state. Contrary to this slow kinetic
transition, there is an abrupt change in the ! dependence
of gi(t) and also in the time variation of all the correla-
tion functions at the CT temperature T’} characteristic of
a first-order transition. Additional interesting informa-
tion gained from these figures is that both the icosahedral
and cubic orders are present as seen from the dominant
temporal correlations for I = 6 and [ = 4 at all the tem-
peratures. We do not understand why the uniaxial com-
ponent (I = 2) is higher than ! = 8 and 10 at all the
temperatures (Fig. 5). The ! dependence and the mag-
nitude of the long-time saturation of g;(t)’s for the final
bcc crystalline states of the simulation run Xk [Fig. 3(a)]
agree better with those of the run Xl [Fig. 3(b)] than with
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Xm (Fig. 3). This corroborates the inference that the bcc
crystal in Xk has an imperfect sublattice ordering, as dis-
cussed when comparing the PDF’s [22] and Q,’s for these
states.

Another interesting fact about these correlation func-
tions is that at almost all the temperatures, except for
ge(t) in the crystalline state Xk, the decay of the density
correlation functions is slower than the corresponding de-
cay of the orientational functions and while cooling, the
freezing of the density modes sets in at a higher tem-
peratures compared to the orientational modes. In other
words, it implies that the density fluctuations are frozen
in before the orientational fluctuations.

If the system consists of short-range ordered “do-
mains” (with similar ! dependence) that are oriented at
different preferred directions, g;(¢) might show an ! de-
pendence different from @Q;. This is because Q; will show
the order present in the domains of the system while g;(t)
will reflect the average order [32]. This, we believe, is the
reason for such a difference present in our system near
the GT, as seen by comparing Figs. 5 and 9(c). This is
further supported by the fact that in the crystals, these
domains must align with respect to each other to give
rise to the identical [ dependence of Q; and g;(t), which
is the case here, as seen by comparing Figs. 2, 3, 8, 9(a),
and 9(b). In the case of the GT, we note that the spatial
growth of such a domain to supersede the system size
could also be a reason for the observed difference. Such
growth is intrinsic to the spin-glass systems [16] but is
not seen in the MD simulations of LJ systems [9,10] as
well as in the present simulation of colloids (Fig. 6).

C. Translational and bond-orientational
relaxation times

The growth of the translational and the bond-
orientational relaxation times as the liquid is cooled to-
wards the CT (Figs. 2 and 3) or the GT (Figs. 4 and
5) is well demonstrated by the corresponding correla-
tion functions c2(t) and g;(t). One of the universal fea-
tures of the relaxation dynamics near the GT is the
multiexponential nature of the relaxation resulting in
stretched-exponential relaxation, which is slower than
single-exponential relaxation. This is often well described
by the Kohlrausch-William-Watts (KWW) stretched-
exponential function [35]

¢(t) = exp [—(t/7)"] . (8)

The KWW function corresponds to a continuous distri-
bution of single-exponential decays, with a width of the
distribution characterized by the exponent 3, having val-
ues less than unity. The average relaxation time is given
by the well-known I'-function relation

)= /000 #(t)dt = ZT (%) . 9)

The corresponding fits with the KWW stretched-
exponential functions for c(t) and total g;(t) are also

shown in Figs. 2-5 by dotted lines. The partial g;’ﬂ @)
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(a,8 = 1 or 2) are also fitted with KWW functions -

with the similar accuracies and are not shown here. It is
clearly seen from these figures that the correlation func-
tions near the glass transition are better fitted by the
KWW function than that for the CT. In fact, at temper-
atures very close to and below the GT temperature T,
the fits are indistinguishable from the data (whereas the
fits are relatively poor as the CT is approached). The
correlation functions for the crystalline states (runs Xk,
Xl, and Xm) could not be fitted with the KWW func-
tions.

The relaxation times from the correlation functions
c2(t) and g;(t) over the entire temperature range of cool-
ing towards the CT as well as the GT have been extracted
with the use of Eq. (9). The “three-stage freezing” (to
a crystal or a glass), noted earlier in this paper, is again
confirmed from the data for relaxation times in Figs. 10
and 11. The intermediate state is clearly identified be-
tween Ty = 0.0407 and T3 = 0.0378 for the CT and
T = 0.0313 and T3 = 0.0302 for the GT, where the sys-
tem behaves relatively more liquidlike (mobile) compared
to its immediate higher temperature.

It can be clearly seen in Fig. 10 that cy(t), gi(t),
g1l (t), and g#%(t) for the liquid, before the onset of
the anomalous intermediate state takes place, i.e., for
T* < T{ (= 0.0407) in the case of the CT, fit quite ex-
cellently to the well-known Arrhenius law
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The fit parameters are given in Table 1.
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The fit parameters are given in Table I.
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with the fit parameters given in Table I. For the heavier
particles, the translational and bond-orientational relax-
ation times are quite closer in magnitude to each other
as compared to the same for the lighter particle. In fact,
(7) for I = 6 and c»(t) happens to be nearly identical for
the heavier sublattice in the entire range of temperature
before the crystallization takes place.

Contrary to the above Arrhenius behavior, the increase
of the relaxation times for these correlation functions
with lowering the temperature is much larger near the
GT, as shown in Fig. 11. This non-Arrhenius divergence
of the relaxation times is much faster than the power law
associated with any thermodynamic phase change (crit-
ical slowing down). The temperature dependence of (7)
near the GT for many glass-forming liquids has been very
successfully fitted to a universal functional relationship

(r(T%)) _ ATg
5t —exP(J”-—Tg)’
which is called the Vigel-Tammann-Fulcher (VTF) law
[36] or, equivalently, the Williams-Landel-Ferry equation
[37] in the polymer literature. Here 0 < Ty < Ty. An-
other equivalent expression that has also been used in the
literature to analyze experimental data is based on the

(10)

(11)
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TABLE I. Optimal parameters for fitting the Arrhenius law [Eq. (14)] for ¢ = 0.2 and the VTF
law [Eq. (15)] for ¢ = 0.3 to the average relaxation times (7). (7)’s are extracted via Eq. (13) from
the KWW [Eq. (12)] fits to c2(t) and gi(t) (I = 2,4,6,8, and 10). The relevant fits are shown in

Figs. 10 and 11, respectively.

Total Species 1 Species 2
Function A B A B A B
¢ = 0.2, Arrhenius law —(g = Aexp (%)
c2(t) 4.789 0.206
g2(t) 2.812 0.218 3.486 0.231 4.131 0.203
ga(t) 2.657 0.239 1.932 0.258 3.739 0.205
ge(t) 3.815 0.206 1.837 0.258 3.558 0.231
gs(t) 1.823 0.235 1.029 0.225 2.639 0.220
g1o(t) 1.227 0.235 0.275 0.222 2.067 0.231
Function T A T A T3 A
¢ = 0.3, VTF law L(;I;z = exp (T;‘%";OT)
ca(t) 0.0307 10.003
g2(t) 0.0303 8.5070 0.0304 8.4895 0.0305 8.0588
ga(t) 0.0301 8.5095 0.0301 7.5723 0.0305 8.3000
ge(t) 0.0300 8.8815 0.0298 7.8251 0.0306 8.5925
gs(t) 0.0299 7.7549 0.0302 7.0502 0.0302 7.4019
910(t) 0.0300 7.7267 0.0302 6.4701 0.0301 7.3639

Gaussian random energy model (GREM) used by Bassler

[38] and is given by
(r(T*)) _ AN
e =P |:(T_) ] -

There have been quite a few theoretical attempts to de-
rive the VTF law [39] using the concept of cooperative
rearranging region [40], free volume theory [41], and ran-
dom energy and random coordination number model [42].
Vilgis had shown that GREM result could be obtained as
a special case of the VTF form [42]. The terms “strong”
and “fragile” glass-forming liquids were coined by Angell
et al. [43] to argue the nonuniversality of the GT: on the
one hand, typical strong glass formers (network materials
such as various oxide glasses) show an Arrhenius temper-
ature dependence of (7), whereas, on the other hand, the
fragile (non-network molecular or ionic) glass-forming lig-
uids with large fluctuating coordination numbers show a
non-Arrhenius increase in (7) with decreasing tempera-
ture. It has been pointed out [17] that it is possible to
obtain both of these apparently opposite features from
the VTF law, depending on the “strength” of the glass
former as reflected by the value of the parameter A in Eq.
(11), which may vary from about 3 to 100. The smaller
the value of A, the more fragile the glass former [44].
Our data are fitted better by the VTF law than by the
GREM equation, in agreement with the similar findings
for the ergodicity-diffusion parameters for the soft-sphere
systems (interacting via the 712 potential) and the er-
godicity and the self-diffusion parameters for the LJ sys-
tems [45]. In Ref. [45], the self-diffusion coefficient had
shown an Arrhenius behavior for the soft-sphere mixtures
in contrast to the non-Arrhenius VTF behavior seen for
the LJ systems. It was argued to be due to the lack of
short-range cooperativeness (e.g., icosahedral order, etc.)

(12)

in the soft-sphere systems in contrast to the LJ systems.
Our simulations clearly oppose this conjecture. In fact,
like in the LJ systems, short-range bond-orientational or-
der (e.g., icosahedral, cubic, etc.) as well as very strong
cooperative behaviors (e.g., jump diffusion, etc.) [23] do
prevail near the GT in the soft-sphere systems as well.

In Fig. 11 we have shown the VTF fits for the temper-
ature dependence of the total (7), extracted from these
correlation functions, along with those for lighter and
heavier sublattices. Table I gives the relevant fitting pa-
rameters. The values of the “ideal” GT temperature Ty
obtained from the fits of cz(t) and different g;(t) are very
close to each other. Our data show that the material-
dependent phenomenological strength parameter A is not
very sensitive to the type of the physical quantity being
probed. Its value lies approximately between 7 and 8.5
for the orientational correlations and is about 10 for the
translational one. This indicates that the colloidal sus-
pensions are extremely fragile glass formers in the no-
tation of Angell et al. [43], where the rapid decrease of
the relaxation time as the temperature increases is associ-
ated with the multiplicity of configurations of the ground
states. The drastic effects shown in the GT and the pos-
sibility of getting quite close to T; [17] are the essential
features that make fragile systems of considerable impor-
tance.

The use of mode-coupling theories (MCT’s), devised
originally to describe the microscopic dynamics of dense
liquids, has made significant advancements possible in
the understanding of the dynamical behavior of super-
cooled liquid near the GT. The basic version of the theory
due to Bengtzelius et al. and developed independently by
Leutheusser [46] and further by Gotze and Sjogren [47]
incorporates explicitly the delayed nonlinear coupling be-
tween density fluctuations and makes detailed predictions
regarding the relaxation dynamics near the GT. One of
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the predictions of the MCT [47] for the GT is the time-
temperature superposition principle: as T* approaches
some critical temperature T from above, the “shape” of
any given correlation function does not depend on the
temperature, in the a relaxation regime. This would im-
ply a “constant” stretching exponent 3 of Eq. (8) over
this range of temperature. By properly scaling the time,
the correlation functions at various temperatures would
then fall on a unique “master curve,” which is often well
fitted by a simple KWW stretched-exponential function.
Experiments [48,44] and simulations [e.g., Ref. [49] and
our results for the Van Hove self-correlation function
FZ(q,t) [30]] have provided evidence in support of this
scaling property. By contrast, experimental evidence for
a strong temperature dependence of 3 also exists for a
variety of glass formers (for example, see the references
cited in the Ref. [44]). Our data for 3 show a striking lin-
ear dependence of 1/T* [Fig. 12(b)] for all the correlation
functions studied here when approaching T from above.
On the contrary, 3 is more or less temperature indepen-
dent in the liquid phase, well above the crystallization
[Fig. 12(a)]. The shape of different correlation functions,
as reflected from the values of the Kohlrausch stretching
exponent (3, tends to become almost identical (approxi-
mately 0.05) near the GT, in contrast to the case of the
CT, where 3 seems to fluctuate about a constant value.
We note that at high temperatures, since the correlation
functions decay to zero very fast, there are not enough
data points for the 3 of the fitted curve of Eq. (8) to be re-
liable. Hence 3 values for those T* are omitted from Fig.
12. Though these correlation functions fail to show the
time-temperature superposition principle, we have con-
firmed that [30] it is clearly valid for the self-intermediate
scattering functions F'(g,t). This is not entirely unex-
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pected for g;(t), since these functions measure a differ-
ent property than F(gq,t) and a relaxation is known to
depend on the quantity considered. The reason for the
difference in results between c;(t) and F(g,t) could be
twofold. First, the MCT predictions are meant for the
density autocorrelators of the type F(g,t), for fixed val-
ues of wave vectors g, whereas, because of dividing the
simulation box in grids and then defining a “lattice-gas”
variable n(%,t), the correlation functions, e.g., cz(t), de-
fined by this variable become extremely coarse grained
and dependent on the uniformity of the meshing. Sec-
ond, the closest approximation of F(g,t) should, in prin-
ciple, be the Fourier transform of C4(r,t) (the one to
one correspondence of the two functions are yet to be
checked for), but what we have measured is c5(t), where
the ¢ dependence is not incorporated. Apart from the ex-
perimental findings [50] and the theoretical inference [51]
that fragile glass formers are prone to show a strong tem-
perature dependence, it was also suggested [43,52] that
there could be a connection between the non-Arrhenius
form [Eq. (11)] and the nonexponentiality [Eq. (8)]. This
was strengthened by the previous findings [50] that the
more fragile the system (i.e., the lower the value of A),
the steeper the approach towards the stretched relaxation
(B ~ 0) as a function of temperature. This is not the case
in Fig. 12(b), where A ~ 10 for c3(t) and A ~ 8 for g;(t).
Thus our results, i.e., the approach towards § ~ 0 slows
down with lowering A, question the suggestion of a gen-
eral relationship between the nonexponential nature of
the correlation functions and non-Arrhenius behavior of
the relaxation times.

III. SUMMARY AND CONCLUSIONS

In this paper we have reported the BD results on the
translational and bond angle correlation functions for a
simple Derjaguin-Landau-Vernay-Overbeek model of the
binary polyball mixture, as it is cooled towards forming
a crystal or a glass. The static parameters and the mean-
squared displacement of the same states are reported in
paper I [22]. The main results and conclusions of this
paper are as follows.

(i) We quantify the translational order in terms of the
two-point normalized c2(t) and four-point Cy(r,t) den-
sity autocorrelation functions. The nearest-neighbor ori-
entational order is quantified in terms of the I-dependent
quadratic rotational invariant @; and the normalized
bond-orientational autocorrelation functions g;(t).

(ii) The value of C4(r,t) being nearly equal to [Ca(t)]?
for r > 2a, at all temperatures when a liquid is quenched
to a metastable glass shows that there is no correlation
length in the system, which is diverging near the glass
transition. On the other hand, the difference between
these two quantities increases as the crystal transition
is approached and eventually goes to zero in the crys-
tal state of the system, indicating that there is a finite
growth of correlation length as a liquid is cooled towards
a crystal.

(iii) The ! dependence of Q; in the crystalline state
(¢ = 0.2) does not match that of a perfect bcc lattice
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(with simple-cubic sublattice ordering). This suggests
that the crystalline state, whose g(r) shows bcc order
(paper I [22]), has distortions present in its structure.
The changes of the descending order of magnitude from
Q4,Qs, Q10, Qs, Q2 in the liquid to Q¢, Q4, Qs, Q10, Q2 in
the glass and Qs, Q4, @10, Rs, @2 in the crystal indicate
that icosahedral (I = 6) order predominates at the cost
of cubic order (I = 4) near the glass transition as well as
the crystal transition.

(iv) The normalized cz(t) decays slower than g;(t)
as a liquid is cooled either towards a crystalline or a
glassy state. These correlation functions for a super-
cooled liquid freezing towards a glass fit well to the
KWW stretched-exponential form exp [——(t/'r)ﬁ], sup-
porting the existing notion that stretching or multire-
laxation processes could be a universal feature of the dy-
namics near glass transitions.

(v) The average translational and bond-orientational
relaxation times [(T) = %I‘(%)] are extracted from the
fitted stretched-exponential functions as a function of
T*. The temperature dependence of (7) is Arrhenius
([(m(T™))/6t] x exp(B/T*)) for a liquid to crystal tran-
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sition while it can be approximated reasonably well by
the VTF law ([(7(T*))/dt] = exp[ATy/(T* — 13)]) for a
liquid to glass transition. The value of the parameter A
points out that the colloidal suspensions are fragile glass
formers such as the organic and molecular liquids. The
GREM fails to explain the temperature dependence of

(1)
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